Reg. No.:	
-----------	--

Question Paper Code: 40192

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Sixth Semester

Electronics and Communication Engineering

EC 1354 — VLSI DESIGN

(Common to Electrical and Electronics Engineering)

(Regulations 2008)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the special feature of Twin-Tub process?
- 2. Differentiate Enhancement and Depletion mode device.
- 3. Draw stick encoding diagram for two input NOR gate.
- 4. Design 2:1 MUX using transmission gate.
- 5. Draw the transfer characteristics of a CMOS inverter.
- 6. How do you overcome short channel effects in MOS transistors?
- 7. Draw the circuit diagram and truth table of Modulo 2 Adder.
- 8. Define the term crosstalk.
- 9. Distinguish between behavioural modeling and data flow modeling.
- 10. What is test bench?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Explain the various steps involved in Twin-tub fabrication process for an inverter.

Or

(b). Draw and discuss the MOS transistor Model and small signal AC characteristics with neat diagrams.

12.	(a)	Explair	n the complimentary CMOS inverter DC characteristics.	(16)
12.	()		Or	(8)
	(b)	(ii) F	Explain the concept of static and dynamic CMOS design. Explain the construction and operation of transmission gates.	(8)
13.	(a)	(i) I	Explain in detail about the scaling concept and design ma	
		(ii) Y	concepts. Write short notes about the transistor sizing for the performan combinational Networks.	çe 1n (4)
			Or	
	(b)	Descr	ribe in detail about the resistance and capacitance estimination in a CMOS circuit with the proper loads and drivers.	ation (16)
			Design a generic carry look ahead adder.	(10)
14.	(a)	(i) (ii)	Explain briefly about high speed adder circuits.	(6)
	(b)	(i)	Or Design a circuit for a 4 bit unsigned magnitude comparate explain. Describe about delay modeling and clock distribution in ICs.	(8)
1	5. (a	(ii) Exp exa	lain in detail about hierarchical modeling concepts with s mples in VHDL.	uitable (16)
	(k	(ii)	Or Explain the Task and-functions in VHDL with an examples. Briefly explain dataflow and behavioural level modeling in V	(8) HDL. (8)